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NASA TI' F-9325 

SOLUTION OF A PROBLESI IN TEE CONTROL OF 
TRE MOTION OF NONLINEAR SYSTEMS 

J / L  5 3  ABSTRACT 

An approximate method i s  given for solving a problem i n  the 

control of the motion of  nonlinear systems. The convergence 

of the successiire approximations i s  demonstrated. A pro- 

cedure i s  indicated fo r  implementing the solution of t h i s  

problem on electronic analog equipment. A s  an application 

of the  method, the problem of the  accelerated drive of an 

A n s c h k  gyrocompass i n  t h e  meridian i s  solved when the 

l a t t e r  instrument has a nonlinear restoring force. 

1. YA. 

L e t  the motion of a 

ing type of d i f f e ren t i a l  

-- - ax* 
dt 

N. ROYTENBE3G'S "ZEROING-IN" PROBLEM 
IN NONLINEAR SYSTEMS 

(REFEFENCE 1) 

cer tain controlled system be described by the follow- 

equations: 

I 165 - 

- - .  
(Y = 'i, 2, .. . )  n ) .  (1.1) ! 

Here x are  the phase coordinates of the investigated system, F (t) are V V 

prescribed external forces, representing continuous functions of the tik, 

q (t) are additional external forces (control forces),  whose law of variation 

i s  yet t o  be determined, a (t) are known continuous functions u f  the time, E 

i s  some positive parameter. 
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The system of scalar  functions (1.1) is,equivalent t o  the matrix equation 

- A(t)x + E ~ ( x )  4- f ( t )  + q(t ) ,  (1.2) 
ax 
at 
-- 

- 

where X, A ( t ) ,  Y ( x ) ,  f(t), q(t)4 denote the following matrices: ~- 

x = II sv I I ,  A(t )  = ~;avp(t) i / ,  Y ( x )  = II  YV(q 32, ..., 2,) It, 
f ( t )  = Ilfv(t)II, q ( t )  = l l q v ( t ) l l  (v ,  p = 1, 2, . . . , n)* 

Using the symbol 8 (t) t o  denote the fund,amental matrix fo r  the  matrix 

d i f f e ren t i a l  equation 

a x  
at 
-- - A(t)xj 

we can transform from the nonlinear matrix d i f f e ren t i a l  equation (1.2) t o  the 

\ 

where 

i s  a matrix weighting function for  the matrix d i f f e ren t i a l  equation (1.3). 

e-’(O) denotes in equation (1.5) the inverse matrix of e(a) . 
1166. 

Confining our treatment t o  the case of control forces t h a t  remain constant 

i n  the time in te rva l  t S t \< t 
0 1’ 

(1.6) 4 v ( t )  = q v *  ( 1 1  = I , & .  . ., n),, 

we pose the problem of finding the constant vector q* = 11 q * 11, for which the 

condition 
V 
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(1.7) x(h) = x 4 
i s  sa t i s f ied ,  where K i s  a prespecified constant vector, t 

ins tan t  of  time. 

i s  a predetermined 
1 

To solve the problem as  stated,  we d i rec t  o u r  a t tent ion t o  equation (1.4), 

according t o  which the condition (1.7) will be sa t i s f ied  i f  the vector q* i s  

chosen such t h a t  the following relat ion i s  fu l f i l l ed :  

where y, s ( t ) ,  1VTt)l denote the matrices 

(i.10) -(1.12) 
t 

W(t) = 5 N(t ,  0)du. 
t 0  

To determine the vector q* f'rom the relat ions (1.8) and (1.9), we apply 

the method of successive approximations. 

assume 

For the zeroth approximation, we 

The solution of the nonlinear matrix integral  equation (1.9) for q* = y o r ,  

what i s  equivalent, the d i f f e ren t i a l  equation (1.2) f o r q  (t) E y ,  w i l l  be 

symbolized by x (t) . 0 

3 



0 
Substituting x (t) in to  the right-hand side of -(1,8) and l e t t i n g  

(1.14) 

we obtain the following exprzssion f o r  the  control force vector, which we w i l l  

adopt as  the first approximation, t o  w i t :  

nt 

q' = y - 2 &vj 'Y(Xo(oj ) ) ,  
j=i 

where 

We define the (k + 1 ) t h  approximation fo r  the control force vector by @ 
the  re la t ion  

where 

i s ,  i n  turn, the solution of the matrix d i f f e ren t i a l  equation (1.2) f o r  
k 

q ( t )  = q 

Consequently, t o  obtain the successive approximations, the nonlinear 

system (1.2) i s  f i r s t  simulated f o r  the prescribed i n i t i a l  conditions and fo r  

q (t) = y .  The generation of  the vectors x (q.) ( j  = 1, 2,..., m) i s  ensured 

i n  the course of integration. 

0 

J 
Substitution of these vectors into the r ight-  

I 
h a d  side of equation (1.15) yields the f i r s t  approximation q . The subsequent 

4 



approximations are obtained analogously. - It i s  apparent from (1.10) and (1.16) 

t ha t  i n  order t o  determine the matrices y ,  V j ,  the matrix weighting function 

N (tl,c) mus t  be known. We are aware (ref:  2) t ha t  

N(ti, 0 )  Z'(O). . .  

Here Z(c) i s  the fundamental matrix of  t h e  conjugate system 

(1.18) 

satisfying the condition 

Z ( t i )  = E,, (1.20) 

where E i s  a unit  matrix of nth rank. 

transposes of  the  matrices Z(c) mdA(cr) .. 
The symbols Z (e) and A (e) denote the - n 

Inasmuch as  we only know, a t  t h i s  point, the  f i n a l  values f o r  the variables 

of the conjugate system, i n  order t o  determine the matrix weighting function 

N (t ,m) by means of electronic malog devices it i s  f i r s t  of  a l l  necessary t o  

determine the i n i t i a l  values fo r  the variables of the conjugate system so as t o  

meet t he  condition (1.20). 

system (1.19) (see, e.g., ref.  2 ,  3). 

1 

These can be found by integrating "back" the 

For the  case when the fundamental matrix of the controlled system i s  con- 

s tant ,  we have (ref .  4) 

N(ti, (5) =x(ti - a), (1.21) 

where X(t) i s  the fundamental matrix of the matrix d i f f e ren t i a l  equation (1.3) 

sat isfying the condition 

(1.22) 



Hence it i s  

computed without 

2. 

clear  t ha t  the matrices y,V’ i n  t h i s  special  case can be 

resort ing t o  the conjugate system. 

PROBLEM OF THE ACCI$ERATED MERIDIANAS, DRIVE OF 
THE A N S C m Z  GYROCOMPASS 

A s  an application of the method outlined above, we w i l l  solve the problem 

of an accelerated drive imparted t o  the Anschbtz gyrocompass i n  the meridian 

when t h i s  instrument has a nonlinear restoring force. 

The equations of precessionalmotion of the AnschUtz gyrocompass, which 

absorbs natural  osci l la t ions by means of a i r  j e t s ,  have the form (ref .  5 )  

-a, + IPp = HU sin (2 $. Q ( t ) ,  HP + (1iUhscp)a + Np = 0. (2.1) 

Here a i s  the azimuthal angle of rotat ion of  the gyrocompass, p i s  the  

angle of  ascent of the southern t i p  o f  the  gyro rotor  above the  horizontal 

plane. 

the  gyro, U i s  the angular velocity o f  diurnal ro ta t ion  of the  earth, 4 i s  the 

la t i tude  of the point of observation, N i s  the reactive torque due t o  a i r  pres- 

sure, ’ which i s  directed along the axis of the figure,  and Q(t) i s  an addi- 

t i ona l  generalized external force (representing the torque r, e la t ive  t o  the 

eastern axis of the  gyro and applied t o  accelerate the gyrocompass i n  the 

meridian), whose law of variation i s  subject t o  determination. 

H denotes the kinetic moment of the gyro, LP i s  the s t a t i c  moment of 

1168 

Denoting 
- . .  

Nsin cp HU sin cp , S=$- 
IP ’ c .  a + Z Z  2 1  = 

IPU cos 9, N Q ( t )  
9 a ( t ) =  -- 2s = - H ’  H I  k? = 

6 



3 
and introducing the nonlinear temnLQ (x ) = -EX 

precessional motion of the Anschutz gyrocompass i n  the following form: 

, we write the equations of 
2 1  1 

The in tegra l  equations equivalent t o  the d i f f e ren t i a l  equations (2.3) have 

the form 
2 

where X (t) are elements of the fundamental matrix of equations (2.3) for 
V P  

q (t)- 0 and € E 0, satisfying the conditions 
1 

We now require tha t  a t  the time t = t the gyrocompass be driven i n  the 1 
meridian, i n  other words, t ha t  

(2.6) Z i ( t )  = sz(tJ = 0. 

Since there i s  o n l y  one controlling force and the nwber of controlled 

phase coordinates i s  equal t o  two, we pursue the basic idea of reference 1 and 

divide the in te rva l  (0, t ) i n t o  two equal subintervals, designating qsl* and 

(t) on the indicated subintervals. 
1 

* as  the values of the step function q 
q12 1 

Then, on the  basis  of equation (2.4) we obtain the following relat ions f o r  

determining these quantities: 

7 



t 
0' - 1, 2). (2.7) 

j 11 (2 x 2), where " w Y l  
and W are elements of  the inverse matrix of W = 

j v  
- 

.. 
This problem was solved wi th  the aid Gf an clectronic analog f o r  the 

following values of  the paraxeters: 

kz = 1.53921 -10-6 SeC-l , 
s = 2.97756 * io-' set- I 

1 
e = 0.4.10-4 sec-11, 
H = z90.000 g-cm-sec. 

u COS cp =3.646.10-5 tsec-1L 

Figure 1 

The drive t i m e  t - 1800 see. The i n i t i a l  deviations were 1 -  

s~(O) == 0.3, t~(0) = 0.004. 

a 



. 
The electronic analog solution yielded the following resu l t s :  

yI1 = - 0 . 3 ~ 2 . i o d  sec-1 , . 
yI2 = -0.602p.10-4 set-1 , ' (2.10) 

which were taken as the zeroth approximation f o r  the step-fynction force q (t). 
1 

In simulating the system (2.3) i n  correspondence with the values of the  

parameters (2.8)' with the i n i t i a l  conditions (2.9) and force (2.10), we obtain 

(2.11) I l l o  = 0.2085, 11.z~ = 5.1146, ~ 1 3 '  = -0.0465, Z I P  r= 4.0378, 

XISO = -0.0228, ~ 1 6 '  = -0.0045, 

J-J 

E: 300 sec; j = 1j 

where x, 2° are  the values of the  function x '(t) a t  the points t =q (U -u. 
1 J J - 1  

Substi tuting x '(t) in to  the right-hand sides of (2.7) and l e t t i n g  1 

we obtain the f i rs t  approximation: 

1' 
With t h i s  force acting a t  the instant t = 1800 sec,  the  coordinates x 1 

x go t o  zero. The error ,  normalized t o  a scale of 100 V, does not exceed 1%. 
2 

The process of driving the gyrocompass i n  the meridian by means of the 

force (2.13) i s  i l l u s t r a t ed  graphically by the functions x x i n  figure 1. 
1' 2 

3. PROOF OF CONVERGENCE OF TRE 
SUCCESSIVE APPROXIMATIONS 

Let u s  rewrite equations (1.8) and (1.9) i n  the more general form (time 

appearing exp l i c i t l y  i n  the nonlinear terms) 

9 



(3.3) -( 3.4) 

( 3 . 3 4 3 4  

To prove the  convergence of the successive approximations, we in t e r j ec t  

t he  following postulates: 

1) The vector function ( x ,t) i s  continuous w i t h  respect t o  a l l  argu- 

ments i n  some closed region D (n  + 1) -diwnsional space ( x  , t) , where 

* -  - +----  

DI D ~ A ~ ( x ,  t )  = { I x - z ~ ( ~ )  I < 26, l o  < t < ti), (3.7)-(3.8) 
zO(t) = s ( t )  + W ( t ) y .  

2 )  I n  the region D, the vector function @ ( x ,  t) s a t i s f i e s  the L i p s h i t s  

r-condition. This means t h a t  f o r  any two points (x", t) and (XI, t) of the 

region D, the condition 

10 



. 
(3.9) 

i s  sat isf ied,  where I x [ denotes the normal form of the vector x . 
The parameter E i s  d e t e d n e d  according t o  the condition 3) 

where M, N, K indicate the following quantities: 

and the numerical value of E w i l l  be determined below. 
0 

We w i l l  show tha t  under these assumptions, a l l  approximations (3.6) f o r  

w i l l  f i t  completely within a tube D O( x, t) c D. any t E [to, tJ 
2 

For t h i s ,  we rewrite (3.4) i n  the form 

f 
t 

xO((t) = z J ( t ) +  e N(t, u)Y(x"(u), a)&, ti < t < t i . '  s 
'a 

Applying the i t e r a t ive  method of Picard t o  the la t ter  (see, e .g., ref 6), 

it i s  not too d i f f i c u l t  t o  show tha t  there ex is t s  f o r  it a unique solution, 

which i s  defined and continuous on the time interval  t -r t ,c t 

completely inside the tube D 

f i t t i n g  
0 1' 

0 
( x , t) , i.e., 

A 
- . - - -  - 

* ( t ) c w ~ ( X t t )  =(Ix-zo( t )I<d,  f o ~ t < ~ t l } c D 0 * a ( x , t ) c D . ,  
- - _  

Letting k = 1 i n  equation (3.6), we obtain 
_ .  . 

' I  

xf(t) = z i ( t )  + e  \ N(t9 ~)'F(x*(u), o ) d U ,  to G t G ti, , 
10 where 

f, 

t t ( t )  = s(t)+W(r)( y- eW-'(ti) \ N(tI, u ) ~ ( x o ( u ) ,  a)& 
10 - 

(3.13) 

(3.14) 

(3.1-5 

11 



We have, on the basis  of equations (3.8) and (3.15), 

(3.1-6) b ' ( t )  - Z ' ( t )  I 5 EMK(ti ---;or< A, t i 2  t < t , ,  
.. . 

Then, as mentioned above, there ex is t s  f o r  equation (3.14) a unique s o h -  

t ion ,  defined and continuous on the  interval t ,< t \< t f i t t i n g  en t i r e ly  

within the tube D ( X  , t),  i.e., 
0 1' 1 

A 

(3.1.8) xi(;) 6 D'a(x, t )  = {Ix'- z ' t t )  I < A, l o  < t < t i } .  

Bearing i n  mind equations (3.16) and (3.18) and relying on the following 

inequal i t ies  for the  normal forms: 

we obtain 

whence it follows t h a t  

Applying the method of mathematical induction'%o equation (3 .6) ,  it i s  

readi ly  shown t h a t  a l l  approximations w i l l  f i t  en t i r e ly  within the tube 

D 2 A  O( x , t) c D. 

Subtracting (3.4) from (3.14)' we obtain 

'I 

1 xi(t)  - x o ( t ) l  = I - ~ W ( t ) w - ~ ( h )  1 X(h, o)u'(xo(u), u)da + 
t 0  

I t 

+ e N(t ,  a)pY(xl(a), u - Y(xo(o),  o)jdo < ,A + FNr \ I xl(a) - xo(u) I do, t o < ! < t ~  

1 0  
1 

1" 

12 



o r  

Sett ing k E 2 i n  equation (3.6) and subtracting (3.14) from (3.6), we 

o r  

Applying mathematical induction, the va l id i ty  of the following estimations 

i s  eas i ly  establis'ied: 

Denoting 

we conclude t h a t  the ser ies  

converges (by virtue of' the  D'Alembert t e s t )  under the s t ipulat ion tha t  

o <  Q(ej  < 1. 

Inasmuch as a l l  terms of the series 

(3.27) [ x ' ( t )  - xO(t ) l+  [X2(t) - x'(t)] + [ . 2 3 ( t )  - x 2 ( t ) ]  +... 



are l e s s  i n  normal form than the corresponding terms of the  ser ies  (3.25), the& 

ser ies  (3.27) not only converges, it converges uniformly for a l l  t E[t 

vir tue of the Weierstrass cr i ter ion.  

tl,]by 
0’ 

Because each term of the ser ies  (3.27) i s  a continuous vector time function, 

the l i m i t  of the sequence ! xk(t) 1 exis t s  and i s  a continuous vector time 

function : 

(3.28) 
l imsk ( t )  = s ( t )  G DO*&(X, t )  c D. , 

k-m 

Bearing i n  mind equations (3.5) and (3.6) and passing t o  the limits as  

k - co, it i s  readi ly  seen t h a t  the  vector function x (t) s a t i s f i e s  the matrix 

in tegra l  equation (3.2)’ and 

s a t i s f i e s  the re la t ion  (3.1). 

It s t i l l  remains for u s  t o  explain a t  what values of 6 the  condition 

( 3.26) w i l l  be fu l f i l l ed .  

A graph of the  function Q(€) i s  i l l u s t r a t e d  by the heavy curve i n  figure 2. 

It i s  eas i ly  shown t h a t  the curve of Q(C)  i s  tangent t o  the s t ra ight  l i n e  

a t  the origin. 

Figure 2 

14 



- A  

L 

Then the curve of a(€) necessarily in te rsec ts  the  s t ra ight  l i n e  Q 1 a t  

i s  t h a t  value which figures i n  the condition 

2 

some point E = € . The value of € 
0 0 

(3.10). 

Thus, under the conditions l), 2),  and 3), the convergence of the succes- 

sive approximations has been proven. 
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